Rijksuniversiteit Groningen Statistiek

Hertentamen

RULES FOR THE EXAM:

- The use of a normal, non-graphical calculator is permitted.
- This is a CLOSED-BOOK exam.
- At the end of the exam you can find a chi-squared table.
- Your exam mark : $10+90 \times$ your score/75.

1. Asymptotic distribution Likelihood Ratio Test statistic 20 Marks.

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be the observed data, such that

$$
X_{i} \stackrel{\text { i.i.d. }}{\sim} f_{\theta_{0}}
$$

Let f_{θ} be twice continuously differentiable with support not depending on θ.
Let $\hat{\theta}=\hat{\theta}(X)$ be the maximum likelihood estimate of θ.
(a) Derive the second order Taylor expansion of the \log-likelihood $\ell(\theta)=\log f_{\theta}\left(X_{1}, \ldots, X_{n}\right)$ at the true value $\ell\left(\theta_{0}\right)$ around the MLE $\hat{\theta}$. [5 Marks]
(b) Show that $\frac{1}{n} \frac{d^{2} \ell}{d \theta^{2}}\left(\theta_{0}\right) \rightarrow-I\left(\theta_{0}\right)=\left.E \frac{d^{2}}{d \theta^{2}} \log f_{\theta}\left(X_{1}\right)\right|_{\theta=\theta_{0}}$ as $n \rightarrow \infty$. [5 Marks]
(c) Use the second order Taylor expansion to show that

$$
-2 \log L R T \approx-\left(\hat{\theta}-\theta_{0}\right)^{2} \frac{d^{2} \ell}{d \theta^{2}}(\hat{\theta})
$$

where LRT is the likelihood ratio test statistic.[5 Marks]
(d) Taking the approximation in (c) as an equality, use (b) and (c) together with the asymptotic efficiency of the MLE $\hat{\theta}$ to show that

$$
-2 \log L R T \rightarrow \chi_{1}^{2}
$$

in distribution as $n \rightarrow \infty$. [5 Marks]
2. Point estimation 10 Marks.

Let X_{1}, \ldots, X_{n} be a sample of independent, identically distributed random variables, with $\operatorname{Unif}(0, \theta)$ density.
(a) Determine the Method of Moments estimator $\hat{\theta}$ of θ. [5 Marks]
(b) Determine whether $\hat{\theta}$ is consistent. [5 Marks]

3. Survival regression 30 Marks.

Let $\left(Y_{1}, x_{1}\right), \ldots,\left(Y_{n}, x_{n}\right)$ be the data, where $\left\{Y_{i}\right\}_{i=1}^{n}$ are independently and exponentially distributed random variables in the following way:

$$
Y_{i} \sim E x\left(\lambda x_{i}\right), \quad i=1,2, \ldots, n
$$

i.e.

$$
f_{Y_{i}}(y)=\lambda x_{i} e^{-\lambda x_{i} y} 1_{y \geq 0} .
$$

The known constants $\left\{x_{i}\right\}$ are strictly positive.
(a) Derive the maximum likelihood estimator for λ. [Hint: Don't forget to show that this is really a maximum.] [10 Marks]
(b) Determine whether the MLE is a sufficient statistic. [5 Marks]
(c) Exponential distributions are often used to model survival times. A researcher wants to find the relationship between the price of a light bulb and its life span. She samples 40 different light bulbs and hypothesizes the above model, whereby for $i=1, \ldots, 40$

- $x_{i}=\frac{1}{\text { (euro) price of light bulb } i}$
- $Y_{i}=$ life span of light bulb i (in years).

The plot of the relationship between price and lifespan is given in the plot below. We are given that $\sum_{i=1}^{40} x_{i} y_{i}=80$.

Life span vs price of light bulb

Figure 1: 40 measurements of light bulb life spans versus their price.
i. A consumer organization wants to know whether, based on these data, it can reject $\lambda=1$. Based on the asymptotic distribution of the MLE as test-statistic, set up a hypothesis test with null and alternative hypothesis to see if there is
sufficient evidence for a relationship at a significance level of $\alpha=0.05$ (hint: the standard normal 0.975 quantile is 1.96). [10 Marks]
ii. Calculate the (numeric!) 95% confidence interval for λ based on the asymptotic distribution of the likelihood ratio statistic. Draw this confidence interval in a plot of the likelihood ratio statistic versus λ. [Hint: you are allowed to "read off" the numeric CI from this plot, but provide the inequality that you would like to solve.] [5 Marks]
4. Optimal testing 15 Marks. Consider a single observation X from a exponential distribution with mean μ, i.e. with density

$$
f_{X}(x)=\frac{1}{\mu} e^{-x / \mu}, \quad x>0
$$

We want to test the following hypotheses:

$$
\begin{array}{ll}
H_{0}: & \mu=1 \\
H_{1}: & \mu=2
\end{array}
$$

(a) We want to perform an optimal test with a significance level of at most 5% of the null hypothesis against the alternative. Determine the critical region. [10 Marks]
(b) What is the power of this test? [5 Marks]

Below statistical tables which may be used in the calculations.

$\nu \backslash \alpha$	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005
1	0.000	0.000	0.001	0.004	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	11.070	12.833	15.086	16.750
10	2.156	2.558	3.247	3.940	18.307	20.483	23.209	25.188

Table 1: Values of $\chi_{\alpha, \nu}^{2}$ as found in the book: the entries in the table correspond to values of x, such that $P\left(\chi_{\nu}^{2}>x\right)=\alpha$, where χ_{ν}^{2} correspond to a chi-squared distributed variable with ν degrees of freedom.

